Near-time-optimal trajectory planning for wheeled mobile robots with translational and rotational sections
نویسندگان
چکیده
We derive a near-time-optimal trajectory for wheeled mobile robots (WMRs) satisfying the following: 1) initial and final postures/velocities as well as 2) battery voltage and armature current constraints, under assumptions of simplified dynamics and constant translational/rotational velocity sections. We use a simplified dynamic model for WMRs neglecting inductances of motor armatures and divide our trajectory generation algorithm for cornering motion into three sections. We specify a path-deviation requirement for obstacle avoidance. Transforming dynamics into uncorrelated form with regard to translational and rotational velocities, we make extreme control possible. By splining rotational section with translational sections and determining the velocity scale factor, a near-time-optimal trajectory can be obtained. Simulation results along with inverse control of path-following are given to validate the generated trajectory.
منابع مشابه
Trajectory Tracking of Two-Wheeled Mobile Robots, Using LQR Optimal Control Method, Based On Computational Model of KHEPERA IV
This paper presents a model-based control design for trajectory tracking of two-wheeled mobile robots based on Linear Quadratic Regulator (LQR) optimal control. The model proposed in this article has been implemented on a computational model which is obtained from kinematic and dynamic relations of KHEPERA IV. The purpose of control is to track a predefined reference trajectory with the best po...
متن کاملFuzzy Motion Control for Wheeled Mobile Robots in Real-Time
Due to various advantages of Wheeled Mobile Robots (WMRs), many researchers have focused to solve their challenges. The automatic motion control of such robots is an attractive problem and is one of the issues which should carefully be examined. In the current paper, the trajectory tracking problem of WMRs which are actuated by two independent electrical motors is deliberated. To this end, and ...
متن کاملNear minimum-time direct voltage control algorithms for wheeled mobile robots with current and voltage constraints
Near minimum-time direct voltage control (DVC) algorithms synthesizing path-planning and path-following are proposed for wheeled mobile robots (WMRs) satisfying (i) initial and final postures and velocities as well as (ii) voltage and current constraints. To overcome nonholonomic and nonlinear properties of WMRs, we divide our control algorithm for cornering motion into three sections: TSD (Tra...
متن کاملDirect Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration
This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...
متن کاملOptimal Trajectory Planning of a Box Transporter Mobile Robot
This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Robotics and Automation
دوره 17 شماره
صفحات -
تاریخ انتشار 2001